If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=2018
We move all terms to the left:
X^2+X^2-(2018)=0
We add all the numbers together, and all the variables
2X^2-2018=0
a = 2; b = 0; c = -2018;
Δ = b2-4ac
Δ = 02-4·2·(-2018)
Δ = 16144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16144}=\sqrt{16*1009}=\sqrt{16}*\sqrt{1009}=4\sqrt{1009}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1009}}{2*2}=\frac{0-4\sqrt{1009}}{4} =-\frac{4\sqrt{1009}}{4} =-\sqrt{1009} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1009}}{2*2}=\frac{0+4\sqrt{1009}}{4} =\frac{4\sqrt{1009}}{4} =\sqrt{1009} $
| 3v+8=10+2v | | 32.39=7g+3.62 | | 40x+60x=240 | | 32.39=7g | | 8-2(P-4)=-3p+7 | | -2x+4(6+x)=2x-4(6-3x) | | 6v+1+7=-6+4v | | -6(2x+1)+3(-4x-5)=-5(4x-3) | | 20a-40=10a+160 | | x(9-x)-2x(3-x)=3/7*7/3+x^2 | | 1r-4=9+7r-5-7r | | 2^3x+8=4x-2 | | 5(r+3)=2r+15+3r | | 2.25(4x-4)=-2+10x+1 | | x/3=x+6/4 | | 1+6x+4=5 | | L=36a | | 50t2-15t+12=0 | | 3(u-8)+6(u-19)=6 | | 6(x-5)+10=35 | | |3x-4|= | | 50x^2+5(x-2)^2=-1 | | 17m-5m=8 | | -4y+4=-4(2y+ | | 3x^2-1=-2x | | (12x+2)=7x+7) | | 8p-(6p+14)=2-(2p-9) | | 18=2y+56 | | 4(1x-2)+7(1-1x)=1x+4-5 | | 18-2y=56 | | -5w-7=3(w+3) | | 5t+3=72 |